1
0

scsi: ufs: amd-versal2: Add UFS support for AMD Versal Gen 2 SoC

Add support for the UFS host controller on the AMD Versal Gen 2 SoC,
built on the Synopsys DWC UFS architecture, using the UFSHCD DWC and
UFSHCD platform driver. This controller requires specific configurations
like M-PHY/RMMI/UniPro and vendor specific registers programming before
doing the UIC_LINKSTARTUP.

Signed-off-by: Sai Krishna Potthuri <sai.krishna.potthuri@amd.com>
Signed-off-by: Ajay Neeli <ajay.neeli@amd.com>
Acked-by: Bart Van Assche <bvanassche@acm.org>
Link: https://patch.msgid.link/20251021113003.13650-5-ajay.neeli@amd.com
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
This commit is contained in:
Sai Krishna Potthuri
2025-10-21 17:00:03 +05:30
committed by Martin K. Petersen
parent 0e4d26f79a
commit 769b8b2ffd
6 changed files with 632 additions and 0 deletions

View File

@@ -26339,6 +26339,13 @@ F: Documentation/devicetree/bindings/ufs/
F: Documentation/scsi/ufs.rst
F: drivers/ufs/core/
UNIVERSAL FLASH STORAGE HOST CONTROLLER DRIVER AMD VERSAL2
M: Sai Krishna Potthuri <sai.krishna.potthuri@amd.com>
M: Ajay Neeli <ajay.neeli@amd.com>
S: Maintained
F: Documentation/devicetree/bindings/ufs/amd,versal2-ufs.yaml
F: drivers/ufs/host/ufs-amd-versal2.c
UNIVERSAL FLASH STORAGE HOST CONTROLLER DRIVER DWC HOOKS
M: Pedro Sousa <pedrom.sousa@synopsys.com>
L: linux-scsi@vger.kernel.org

View File

@@ -154,3 +154,16 @@ config SCSI_UFS_ROCKCHIP
Select this if you have UFS controller on Rockchip chipset.
If unsure, say N.
config SCSI_UFS_AMD_VERSAL2
tristate "AMD Versal Gen 2 UFS controller platform driver"
depends on SCSI_UFSHCD_PLATFORM && (ARCH_ZYNQMP || COMPILE_TEST)
help
This selects the AMD Versal Gen 2 specific additions on top of
the UFSHCD DWC and UFSHCD platform driver. UFS host on AMD
Versal Gen 2 needs some vendor specific configurations like PHY
and vendor specific register accesses before accessing the
hardware.
Select this if you have UFS controller on AMD Versal Gen 2 SoC.
If unsure, say N.

View File

@@ -13,3 +13,4 @@ obj-$(CONFIG_SCSI_UFS_RENESAS) += ufs-renesas.o
obj-$(CONFIG_SCSI_UFS_ROCKCHIP) += ufs-rockchip.o
obj-$(CONFIG_SCSI_UFS_SPRD) += ufs-sprd.o
obj-$(CONFIG_SCSI_UFS_TI_J721E) += ti-j721e-ufs.o
obj-$(CONFIG_SCSI_UFS_AMD_VERSAL2) += ufs-amd-versal2.o ufshcd-dwc.o

View File

@@ -0,0 +1,564 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2025 Advanced Micro Devices, Inc.
*
* Authors: Sai Krishna Potthuri <sai.krishna.potthuri@amd.com>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/firmware/xlnx-zynqmp.h>
#include <linux/irqreturn.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <ufs/unipro.h>
#include "ufshcd-dwc.h"
#include "ufshcd-pltfrm.h"
#include "ufshci-dwc.h"
/* PHY modes */
#define UFSHCD_DWC_PHY_MODE_ROM 0
#define MPHY_FAST_RX_AFE_CAL BIT(2)
#define MPHY_FW_CALIB_CFG_VAL BIT(8)
#define MPHY_RX_OVRD_EN BIT(3)
#define MPHY_RX_OVRD_VAL BIT(2)
#define MPHY_RX_ACK_MASK BIT(0)
#define TIMEOUT_MICROSEC 1000000
struct ufs_versal2_host {
struct ufs_hba *hba;
struct reset_control *rstc;
struct reset_control *rstphy;
u32 phy_mode;
unsigned long host_clk;
u8 attcompval0;
u8 attcompval1;
u8 ctlecompval0;
u8 ctlecompval1;
};
static int ufs_versal2_phy_reg_write(struct ufs_hba *hba, u32 addr, u32 val)
{
static struct ufshcd_dme_attr_val phy_write_attrs[] = {
{ UIC_ARG_MIB(CBCREGADDRLSB), 0, DME_LOCAL },
{ UIC_ARG_MIB(CBCREGADDRMSB), 0, DME_LOCAL },
{ UIC_ARG_MIB(CBCREGWRLSB), 0, DME_LOCAL },
{ UIC_ARG_MIB(CBCREGWRMSB), 0, DME_LOCAL },
{ UIC_ARG_MIB(CBCREGRDWRSEL), 1, DME_LOCAL },
{ UIC_ARG_MIB(VS_MPHYCFGUPDT), 1, DME_LOCAL }
};
phy_write_attrs[0].mib_val = (u8)addr;
phy_write_attrs[1].mib_val = (u8)(addr >> 8);
phy_write_attrs[2].mib_val = (u8)val;
phy_write_attrs[3].mib_val = (u8)(val >> 8);
return ufshcd_dwc_dme_set_attrs(hba, phy_write_attrs, ARRAY_SIZE(phy_write_attrs));
}
static int ufs_versal2_phy_reg_read(struct ufs_hba *hba, u32 addr, u32 *val)
{
u32 mib_val;
int ret;
static struct ufshcd_dme_attr_val phy_read_attrs[] = {
{ UIC_ARG_MIB(CBCREGADDRLSB), 0, DME_LOCAL },
{ UIC_ARG_MIB(CBCREGADDRMSB), 0, DME_LOCAL },
{ UIC_ARG_MIB(CBCREGRDWRSEL), 0, DME_LOCAL },
{ UIC_ARG_MIB(VS_MPHYCFGUPDT), 1, DME_LOCAL }
};
phy_read_attrs[0].mib_val = (u8)addr;
phy_read_attrs[1].mib_val = (u8)(addr >> 8);
ret = ufshcd_dwc_dme_set_attrs(hba, phy_read_attrs, ARRAY_SIZE(phy_read_attrs));
if (ret)
return ret;
ret = ufshcd_dme_get(hba, UIC_ARG_MIB(CBCREGRDLSB), &mib_val);
if (ret)
return ret;
*val = mib_val;
ret = ufshcd_dme_get(hba, UIC_ARG_MIB(CBCREGRDMSB), &mib_val);
if (ret)
return ret;
*val |= (mib_val << 8);
return 0;
}
static int ufs_versal2_enable_phy(struct ufs_hba *hba)
{
u32 offset, reg;
int ret;
ret = ufshcd_dme_set(hba, UIC_ARG_MIB(VS_MPHYDISABLE), 0);
if (ret)
return ret;
ret = ufshcd_dme_set(hba, UIC_ARG_MIB(VS_MPHYCFGUPDT), 1);
if (ret)
return ret;
/* Check Tx/Rx FSM states */
for (offset = 0; offset < 2; offset++) {
u32 time_left, mibsel;
time_left = TIMEOUT_MICROSEC;
mibsel = UIC_ARG_MIB_SEL(MTX_FSM_STATE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(offset));
do {
ret = ufshcd_dme_get(hba, mibsel, &reg);
if (ret)
return ret;
if (reg == TX_STATE_HIBERN8 || reg == TX_STATE_SLEEP ||
reg == TX_STATE_LSBURST)
break;
time_left--;
usleep_range(1, 5);
} while (time_left);
if (!time_left) {
dev_err(hba->dev, "Invalid Tx FSM state.\n");
return -ETIMEDOUT;
}
time_left = TIMEOUT_MICROSEC;
mibsel = UIC_ARG_MIB_SEL(MRX_FSM_STATE, UIC_ARG_MPHY_RX_GEN_SEL_INDEX(offset));
do {
ret = ufshcd_dme_get(hba, mibsel, &reg);
if (ret)
return ret;
if (reg == RX_STATE_HIBERN8 || reg == RX_STATE_SLEEP ||
reg == RX_STATE_LSBURST)
break;
time_left--;
usleep_range(1, 5);
} while (time_left);
if (!time_left) {
dev_err(hba->dev, "Invalid Rx FSM state.\n");
return -ETIMEDOUT;
}
}
return 0;
}
static int ufs_versal2_setup_phy(struct ufs_hba *hba)
{
struct ufs_versal2_host *host = ufshcd_get_variant(hba);
int ret;
u32 reg;
/* Bypass RX-AFE offset calibrations (ATT/CTLE) */
ret = ufs_versal2_phy_reg_read(hba, FAST_FLAGS(0), &reg);
if (ret)
return ret;
reg |= MPHY_FAST_RX_AFE_CAL;
ret = ufs_versal2_phy_reg_write(hba, FAST_FLAGS(0), reg);
if (ret)
return ret;
ret = ufs_versal2_phy_reg_read(hba, FAST_FLAGS(1), &reg);
if (ret)
return ret;
reg |= MPHY_FAST_RX_AFE_CAL;
ret = ufs_versal2_phy_reg_write(hba, FAST_FLAGS(1), reg);
if (ret)
return ret;
/* Program ATT and CTLE compensation values */
if (host->attcompval0) {
ret = ufs_versal2_phy_reg_write(hba, RX_AFE_ATT_IDAC(0), host->attcompval0);
if (ret)
return ret;
}
if (host->attcompval1) {
ret = ufs_versal2_phy_reg_write(hba, RX_AFE_ATT_IDAC(1), host->attcompval1);
if (ret)
return ret;
}
if (host->ctlecompval0) {
ret = ufs_versal2_phy_reg_write(hba, RX_AFE_CTLE_IDAC(0), host->ctlecompval0);
if (ret)
return ret;
}
if (host->ctlecompval1) {
ret = ufs_versal2_phy_reg_write(hba, RX_AFE_CTLE_IDAC(1), host->ctlecompval1);
if (ret)
return ret;
}
ret = ufs_versal2_phy_reg_read(hba, FW_CALIB_CCFG(0), &reg);
if (ret)
return ret;
reg |= MPHY_FW_CALIB_CFG_VAL;
ret = ufs_versal2_phy_reg_write(hba, FW_CALIB_CCFG(0), reg);
if (ret)
return ret;
ret = ufs_versal2_phy_reg_read(hba, FW_CALIB_CCFG(1), &reg);
if (ret)
return ret;
reg |= MPHY_FW_CALIB_CFG_VAL;
return ufs_versal2_phy_reg_write(hba, FW_CALIB_CCFG(1), reg);
}
static int ufs_versal2_phy_init(struct ufs_hba *hba)
{
struct ufs_versal2_host *host = ufshcd_get_variant(hba);
u32 time_left;
bool is_ready;
int ret;
static const struct ufshcd_dme_attr_val rmmi_attrs[] = {
{ UIC_ARG_MIB(CBREFCLKCTRL2), CBREFREFCLK_GATE_OVR_EN, DME_LOCAL },
{ UIC_ARG_MIB(CBCRCTRL), 1, DME_LOCAL },
{ UIC_ARG_MIB(CBC10DIRECTCONF2), 1, DME_LOCAL },
{ UIC_ARG_MIB(VS_MPHYCFGUPDT), 1, DME_LOCAL }
};
/* Wait for Tx/Rx config_rdy */
time_left = TIMEOUT_MICROSEC;
do {
time_left--;
ret = zynqmp_pm_is_mphy_tx_rx_config_ready(&is_ready);
if (ret)
return ret;
if (!is_ready)
break;
usleep_range(1, 5);
} while (time_left);
if (!time_left) {
dev_err(hba->dev, "Tx/Rx configuration signal busy.\n");
return -ETIMEDOUT;
}
ret = ufshcd_dwc_dme_set_attrs(hba, rmmi_attrs, ARRAY_SIZE(rmmi_attrs));
if (ret)
return ret;
ret = reset_control_deassert(host->rstphy);
if (ret) {
dev_err(hba->dev, "ufsphy reset deassert failed, err = %d\n", ret);
return ret;
}
/* Wait for SRAM init done */
time_left = TIMEOUT_MICROSEC;
do {
time_left--;
ret = zynqmp_pm_is_sram_init_done(&is_ready);
if (ret)
return ret;
if (is_ready)
break;
usleep_range(1, 5);
} while (time_left);
if (!time_left) {
dev_err(hba->dev, "SRAM initialization failed.\n");
return -ETIMEDOUT;
}
ret = ufs_versal2_setup_phy(hba);
if (ret)
return ret;
return ufs_versal2_enable_phy(hba);
}
static int ufs_versal2_init(struct ufs_hba *hba)
{
struct ufs_versal2_host *host;
struct device *dev = hba->dev;
struct ufs_clk_info *clki;
int ret;
u32 cal;
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
host->hba = hba;
ufshcd_set_variant(hba, host);
host->phy_mode = UFSHCD_DWC_PHY_MODE_ROM;
list_for_each_entry(clki, &hba->clk_list_head, list) {
if (!strcmp(clki->name, "core"))
host->host_clk = clk_get_rate(clki->clk);
}
host->rstc = devm_reset_control_get_exclusive(dev, "host");
if (IS_ERR(host->rstc)) {
dev_err(dev, "failed to get reset ctrl: host\n");
return PTR_ERR(host->rstc);
}
host->rstphy = devm_reset_control_get_exclusive(dev, "phy");
if (IS_ERR(host->rstphy)) {
dev_err(dev, "failed to get reset ctrl: phy\n");
return PTR_ERR(host->rstphy);
}
ret = reset_control_assert(host->rstc);
if (ret) {
dev_err(hba->dev, "host reset assert failed, err = %d\n", ret);
return ret;
}
ret = reset_control_assert(host->rstphy);
if (ret) {
dev_err(hba->dev, "phy reset assert failed, err = %d\n", ret);
return ret;
}
ret = zynqmp_pm_set_sram_bypass();
if (ret) {
dev_err(dev, "Bypass SRAM interface failed, err = %d\n", ret);
return ret;
}
ret = reset_control_deassert(host->rstc);
if (ret)
dev_err(hba->dev, "host reset deassert failed, err = %d\n", ret);
ret = zynqmp_pm_get_ufs_calibration_values(&cal);
if (ret) {
dev_err(dev, "failed to read calibration values\n");
return ret;
}
host->attcompval0 = (u8)cal;
host->attcompval1 = (u8)(cal >> 8);
host->ctlecompval0 = (u8)(cal >> 16);
host->ctlecompval1 = (u8)(cal >> 24);
hba->quirks |= UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING;
return 0;
}
static int ufs_versal2_hce_enable_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
int ret = 0;
if (status == PRE_CHANGE) {
ret = ufs_versal2_phy_init(hba);
if (ret)
dev_err(hba->dev, "Phy init failed (%d)\n", ret);
}
return ret;
}
static int ufs_versal2_link_startup_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct ufs_versal2_host *host = ufshcd_get_variant(hba);
int ret = 0;
switch (status) {
case PRE_CHANGE:
if (host->host_clk)
ufshcd_writel(hba, host->host_clk / 1000000, DWC_UFS_REG_HCLKDIV);
break;
case POST_CHANGE:
ret = ufshcd_dwc_link_startup_notify(hba, status);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int ufs_versal2_phy_ratesel(struct ufs_hba *hba, u32 activelanes, u32 rx_req)
{
u32 time_left, reg, lane;
int ret;
for (lane = 0; lane < activelanes; lane++) {
time_left = TIMEOUT_MICROSEC;
ret = ufs_versal2_phy_reg_read(hba, RX_OVRD_IN_1(lane), &reg);
if (ret)
return ret;
reg |= MPHY_RX_OVRD_EN;
if (rx_req)
reg |= MPHY_RX_OVRD_VAL;
else
reg &= ~MPHY_RX_OVRD_VAL;
ret = ufs_versal2_phy_reg_write(hba, RX_OVRD_IN_1(lane), reg);
if (ret)
return ret;
do {
ret = ufs_versal2_phy_reg_read(hba, RX_PCS_OUT(lane), &reg);
if (ret)
return ret;
reg &= MPHY_RX_ACK_MASK;
if (reg == rx_req)
break;
time_left--;
usleep_range(1, 5);
} while (time_left);
if (!time_left) {
dev_err(hba->dev, "Invalid Rx Ack value.\n");
return -ETIMEDOUT;
}
}
return 0;
}
static int ufs_versal2_pwr_change_notify(struct ufs_hba *hba, enum ufs_notify_change_status status,
const struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
struct ufs_versal2_host *host = ufshcd_get_variant(hba);
u32 lane, reg, rate = 0;
int ret = 0;
if (status == PRE_CHANGE) {
memcpy(dev_req_params, dev_max_params, sizeof(struct ufs_pa_layer_attr));
/* If it is not a calibrated part, switch PWRMODE to SLOW_MODE */
if (!host->attcompval0 && !host->attcompval1 && !host->ctlecompval0 &&
!host->ctlecompval1) {
dev_req_params->pwr_rx = SLOW_MODE;
dev_req_params->pwr_tx = SLOW_MODE;
return 0;
}
if (dev_req_params->pwr_rx == SLOW_MODE || dev_req_params->pwr_rx == SLOWAUTO_MODE)
return 0;
if (dev_req_params->hs_rate == PA_HS_MODE_B)
rate = 1;
/* Select the rate */
ret = ufshcd_dme_set(hba, UIC_ARG_MIB(CBRATESEL), rate);
if (ret)
return ret;
ret = ufshcd_dme_set(hba, UIC_ARG_MIB(VS_MPHYCFGUPDT), 1);
if (ret)
return ret;
ret = ufs_versal2_phy_ratesel(hba, dev_req_params->lane_tx, 1);
if (ret)
return ret;
ret = ufs_versal2_phy_ratesel(hba, dev_req_params->lane_tx, 0);
if (ret)
return ret;
/* Remove rx_req override */
for (lane = 0; lane < dev_req_params->lane_tx; lane++) {
ret = ufs_versal2_phy_reg_read(hba, RX_OVRD_IN_1(lane), &reg);
if (ret)
return ret;
reg &= ~MPHY_RX_OVRD_EN;
ret = ufs_versal2_phy_reg_write(hba, RX_OVRD_IN_1(lane), reg);
if (ret)
return ret;
}
if (dev_req_params->lane_tx == UFS_LANE_2 && dev_req_params->lane_rx == UFS_LANE_2)
ret = ufshcd_dme_configure_adapt(hba, dev_req_params->gear_tx,
PA_INITIAL_ADAPT);
}
return ret;
}
static struct ufs_hba_variant_ops ufs_versal2_hba_vops = {
.name = "ufs-versal2-pltfm",
.init = ufs_versal2_init,
.link_startup_notify = ufs_versal2_link_startup_notify,
.hce_enable_notify = ufs_versal2_hce_enable_notify,
.pwr_change_notify = ufs_versal2_pwr_change_notify,
};
static const struct of_device_id ufs_versal2_pltfm_match[] = {
{
.compatible = "amd,versal2-ufs",
.data = &ufs_versal2_hba_vops,
},
{ },
};
MODULE_DEVICE_TABLE(of, ufs_versal2_pltfm_match);
static int ufs_versal2_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
int ret;
/* Perform generic probe */
ret = ufshcd_pltfrm_init(pdev, &ufs_versal2_hba_vops);
if (ret)
dev_err(dev, "ufshcd_pltfrm_init() failed %d\n", ret);
return ret;
}
static void ufs_versal2_remove(struct platform_device *pdev)
{
struct ufs_hba *hba = platform_get_drvdata(pdev);
pm_runtime_get_sync(&(pdev)->dev);
ufshcd_remove(hba);
}
static const struct dev_pm_ops ufs_versal2_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(ufshcd_system_suspend, ufshcd_system_resume)
SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL)
};
static struct platform_driver ufs_versal2_pltfm = {
.probe = ufs_versal2_probe,
.remove = ufs_versal2_remove,
.driver = {
.name = "ufshcd-versal2",
.pm = &ufs_versal2_pm_ops,
.of_match_table = of_match_ptr(ufs_versal2_pltfm_match),
},
};
module_platform_driver(ufs_versal2_pltfm);
MODULE_AUTHOR("Sai Krishna Potthuri <sai.krishna.potthuri@amd.com>");
MODULE_DESCRIPTION("AMD Versal Gen 2 UFS Host Controller driver");
MODULE_LICENSE("GPL");

View File

@@ -12,6 +12,52 @@
#include <ufs/ufshcd.h>
/* RMMI Attributes */
#define CBREFCLKCTRL2 0x8132
#define CBCRCTRL 0x811F
#define CBC10DIRECTCONF2 0x810E
#define CBRATESEL 0x8114
#define CBCREGADDRLSB 0x8116
#define CBCREGADDRMSB 0x8117
#define CBCREGWRLSB 0x8118
#define CBCREGWRMSB 0x8119
#define CBCREGRDLSB 0x811A
#define CBCREGRDMSB 0x811B
#define CBCREGRDWRSEL 0x811C
#define CBREFREFCLK_GATE_OVR_EN BIT(7)
/* M-PHY Attributes */
#define MTX_FSM_STATE 0x41
#define MRX_FSM_STATE 0xC1
/* M-PHY registers */
#define RX_OVRD_IN_1(n) (0x3006 + ((n) * 0x100))
#define RX_PCS_OUT(n) (0x300F + ((n) * 0x100))
#define FAST_FLAGS(n) (0x401C + ((n) * 0x100))
#define RX_AFE_ATT_IDAC(n) (0x4000 + ((n) * 0x100))
#define RX_AFE_CTLE_IDAC(n) (0x4001 + ((n) * 0x100))
#define FW_CALIB_CCFG(n) (0x404D + ((n) * 0x100))
/* Tx/Rx FSM state */
enum rx_fsm_state {
RX_STATE_DISABLED = 0,
RX_STATE_HIBERN8 = 1,
RX_STATE_SLEEP = 2,
RX_STATE_STALL = 3,
RX_STATE_LSBURST = 4,
RX_STATE_HSBURST = 5,
};
enum tx_fsm_state {
TX_STATE_DISABLED = 0,
TX_STATE_HIBERN8 = 1,
TX_STATE_SLEEP = 2,
TX_STATE_STALL = 3,
TX_STATE_LSBURST = 4,
TX_STATE_HSBURST = 5,
};
struct ufshcd_dme_attr_val {
u32 attr_sel;
u32 mib_val;

View File

@@ -174,6 +174,7 @@
#define VS_POWERSTATE 0xD083
#define VS_MPHYCFGUPDT 0xD085
#define VS_DEBUGOMC 0xD09E
#define VS_MPHYDISABLE 0xD0C1
#define PA_GRANULARITY_MIN_VAL 1
#define PA_GRANULARITY_MAX_VAL 6